26a A&P: Muscular System -Fiber Types, Actions, and Contractions

#### 26a A&P: Muscular System -Fiber Types, Actions, and Contractions Class Outline

| 5 minutes  | Attendance, Breath of Arrival, and Reminders |
|------------|----------------------------------------------|
| 10 minutes | Lecture:                                     |
| 25 minutes | Lecture:                                     |
| 15 minutes | Active study skills:                         |
| 60 minutes | Total                                        |

#### 26a A&P: Muscular System -Fiber Types, Actions, and Contractions Class Reminders

#### Quizzes:

- 29b Kinesiology Quiz
  - Supraspinatus, infraspinatus, teres minor, subscapularis, pec minor, & serratus anterior
- **3**1a Quiz (20a, 20b, 21b, 22a, 23a, 24b, 29b, and 30a)
- **3**2a Quiz (24a, 25a, 26a, 27a, 28a, 29a, 30b, and 31b)

#### **Assignments:**

- 30a Review Questions
  - Packet A: 141-158

#### **Preparation for upcoming classes:**

- 27a Pathology: Musculoskeletal System
  - Packet E: 49-54
  - RQ Packet A-153
- **27b** Hydrotherapy: Cold and Contrast Treatments
  - Packet G: 25-28

#### **Classroom Rules**

#### Punctuality - everybody's time is precious

- Be ready to learn at the start of class; we'll have you out of here on time
- Tardiness: arriving late, returning late after breaks, leaving during class, leaving early

#### The following are not allowed:

- Bare feet
- Side talking
- Lying down
- Inappropriate clothing
- Food or drink except water
- Phones that are visible in the classroom, bathrooms, or internship

You will receive one verbal warning, then you'll have to leave the room.

# **Pectoralis Minor** Trail Guide, Page 92

Pectoralis minor lies next to the ribcage deep to the pectoralis major.

During aerobic activity the pectoralis minor helps to elevate the rib cage for inhalation.

Major vessels such as the brachial plexus, axillary artery and axillary vein pass underneath the pectoralis minor. This can create the potential for neurovascular compression.

Pectoralis minor, what does it do?

08.0.D

Anterolateral View

**Depress** the scapula (scapulothoracic joint)

Abduct the scapula (S/T joint)

Downwardly rotate the scapula (S/T joint)

With the scapula fixed: Assist to elevate the thorax during forced inhalation



Third, fourth, and fifth ribs



Medial surface of coracoid process of the scapula





**Depress** the scapula (scapulothoracic joint)

Abduct the scapula (S/T joint)

Downwardly rotate the scapula (S/T joint)

With the scapula fixed: Assist to elevate the thorax during forced inhalation



Third, fourth, and fifth ribs



Medial surface of coracoid process of the scapula





Depress the scapula (scapulothoracic joint)

Abduct the scapula (S/T joint)

**Downwardly rotate** the scapula (S/T joint)

With the scapula fixed: Assist to elevate the thorax during forced inhalation



Third, fourth, and fifth ribs



Medial surface of coracoid process of the scapula





Depress the scapula (scapulothoracic joint)

Abduct the scapula (S/T joint)

Downwardly rotate the scapula (S/T joint)

With the scapula fixed: Assist to <mark>elevate</mark> the thorax during forced inhalation



Third, fourth, and fifth ribs



Medial surface of coracoid process of the scapula





**Depress** the scapula (scapulothoracic joint)

Abduct the scapula (S/T joint)

Downwardly rotate the scapula (S/T joint)

With the scapula fixed: Assist to elevate the thorax during forced inhalation

Third, fourth, and fifth ribs



Medial surface of coracoid process of the scapula



![](_page_9_Picture_10.jpeg)

Depress the scapula (scapulothoracic joint)

Abduct the scapula (S/T joint)

Downwardly rotate the scapula (S/T joint)

With the scapula fixed: Assist to elevate the thorax during forced inhalation

![](_page_10_Picture_5.jpeg)

Third, fourth, and fifth ribs

Medial surface of coracoid process of the scapula

![](_page_10_Picture_8.jpeg)

![](_page_10_Picture_10.jpeg)

26a A&P: Muscular System -Fiber Types, Actions, and Contractions

E - 45

![](_page_12_Picture_0.jpeg)

#### **Energy Sources for Contraction**

Adenosine triphosphate Fuel Oxygen

# **Energy Sources for Contraction**

#### Adenosine triphosphate (AKA: ATP) The body's energy storage molecule.

**Fuel** Glucose, fat, or, rarely, protein. Used to form ATP in the mitochondria. By-products are CO2 and water (from aerobic metabolism), or, from the initial anaerobic process (which only uses carbohydrate, and not O2), lactic acid.

**Oxygen** Combined with fuel in the mitochondria during aerobic metabolism, yielding energy (for making ATP) plus CO2 plus H2O.

![](_page_14_Picture_0.jpeg)

Slow twitch (red muscle) Fast twitch (white muscle) Intermediate twitch (pink muscle)

**Slow twitch (AKA: red muscle)** Skeletal muscle fibers that contract slowly and are fatigue <u>resistant</u>. Examples: postural muscle, core muscle, or legs of long distance runners.

![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_4.jpeg)

![](_page_16_Picture_0.jpeg)

**Fast twitch (AKA: white muscle)** Skeletal muscle fibers that contract forcefully and fatigue rapidly. Examples: arm muscles.

![](_page_16_Picture_3.jpeg)

![](_page_17_Picture_0.jpeg)

**Intermediate twitch (AKA: pink muscle)** Skeletal muscle fibers that are more fatigue resistant than fast twitch, and more forceful than slow twitch. Examples: legs of world class sprinters and arms of world class boxers.

![](_page_17_Picture_3.jpeg)

![](_page_17_Picture_4.jpeg)

![](_page_18_Picture_0.jpeg)

Belly Origin Insertion

![](_page_19_Picture_0.jpeg)

**Belly** The wide central portion of a skeletal muscle that contains the sarcomeres.

![](_page_19_Figure_3.jpeg)

![](_page_20_Picture_0.jpeg)

**Origin** Tendinous muscle attachment on the <u>less</u> movable bone or other structure. Typically medial or proximal to the insertion.

![](_page_20_Figure_3.jpeg)

![](_page_21_Picture_0.jpeg)

**Insertion** Tendinous muscle attachment on the <u>more</u> movable bone or structure. Typically lateral or distal to the origin.

![](_page_21_Figure_3.jpeg)

![](_page_22_Picture_0.jpeg)

Prime mover (agonist) Antagonist Synergist Fixator

![](_page_23_Picture_0.jpeg)

**Prime mover (AKA: agonist)** Muscle responsible for causing a specific or desired action.

![](_page_23_Figure_3.jpeg)

![](_page_24_Picture_0.jpeg)

**Antagonist** Muscles that must relax and lengthen or eccentrically contract and lengthen to <u>allow</u> the actions of the prime mover to occur.

![](_page_24_Picture_3.jpeg)

![](_page_25_Picture_0.jpeg)

**Synergist** Muscle that aids movement by contracting at the <u>same</u> time as the prime movers.

![](_page_25_Picture_3.jpeg)

![](_page_26_Picture_0.jpeg)

**Fixator** Specialized synergist muscles that act as a <u>stabilizer</u>.

![](_page_26_Picture_3.jpeg)

![](_page_27_Picture_0.jpeg)

Isotonic contraction Concentric contraction Eccentric contraction

Isometric contraction

![](_page_28_Picture_0.jpeg)

**Isotonic contraction** Contraction in which muscle changes <u>length</u>.

**Concentric contraction** Isotonic contraction. The muscle <u>shortens</u>.

**Eccentric contraction** Isotonic contraction. The muscle <u>lengthens</u>.

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_30_Picture_0.jpeg)

**Isometric contraction** Contraction in which muscle length remains the same.

![](_page_30_Figure_3.jpeg)

![](_page_30_Picture_4.jpeg)

# Stretching and Stretch Receptors

![](_page_32_Picture_0.jpeg)

## Stretching and Stretch Receptors

Muscle spindleStretch receptor located within the muscle bellyDetects sudden stretching, causing the nervous system to respond by reflexivelycontractingthe muscle.

![](_page_32_Picture_3.jpeg)

## Stretching and Stretch Receptors

**Golgi tendon organ** Receptor located at the musculotendinous junction. Detects tension and excessive stretch, causing the nervous system to respond by <u>inhibiting</u> contraction.

![](_page_33_Figure_2.jpeg)

### Posture and Muscle Tone

![](_page_35_Picture_0.jpeg)

#### Posture and Muscle Tone

Muscle tone (AKA: tonus) Continued partial contraction of skeletal muscle.

![](_page_35_Picture_3.jpeg)

![](_page_36_Picture_0.jpeg)

#### Posture and Muscle Tone

**Flaccid** Skeletal muscle with <u>less</u> tone than normal.

**Spastic** Skeletal muscle with <u>more</u> than normal tone.

## Effects of Massage Therapy on the Muscular System

![](_page_38_Figure_0.jpeg)

# Effects of Massage Therapy on the Muscular System

Decrease tension within the muscle-tendon unit.

Increase range of motion (ROM)

Decrease delayed onset muscle soreness (DOMS)

Enhance exchange of nutrients and waste to speed recovery from fatigue/soreness

26a A&P: Muscular System -Fiber Types, Actions, and Contractions